DRAFT Bluegill Sunfish (*Lepomis macrochirus*) Thermal Tolerance Analyses – Juvenile and Adult, Summer

January 2016

Introduction

Recommended summer chronic and acute thermal tolerance values for juvenile and adult bluegill sunfish and their justification are discussed below. The recommended tolerance values were developed in accordance with the "DRAFT Methodology for Developing Thermal Tolerance Thresholds for Various Fish in Nevada – Juvenile and Adult, Summer" (September 2015).

Chronic Thermal Tolerance Thresholds

Table 1 provides a summary of the range of chronic temperature tolerance values for bluegill sunfish for various lines of evidence. These values are based upon a review of 24 papers and publications, the details of which are summarized in Attachment A.

There is obviously a wide range of temperatures from which to select an appropriate value and best professional judgment is called for. NDEP's approach is to accept the EPA recommendations from Brungs and Jones (1977) unless the literature review provides a compelling reason to utilize other values. EPA's chronic value of 32°C falls within the upper end of the range of potential criteria found in the literature, and is recommended as the chronic thermal tolerance level for adult/juvenile bluegill sunfish. As discussed in the methodology, chronic temperature criteria are generally not set to ensure the most optimum conditions. In fact, Brungs and Jones (1977) recommends chronic criterion for a given fish species that is between the optimum temperature and the UUILT.

Table 1. Summary of Chronic Temperature Tolerances

Category	Temperature (°C)
Laboratory Optimal Growth Studies – Constant Temperature	
Optimum	30 – 31
Laboratory Temperature for Maximum Critical Swimming Performance	
Maximum median temperature	21.5 - 30.4
Maximum third quartile temperature	26.2 – 31.4
Laboratory Temperature Preference Studies	
Average Preferences	18.7 – 33.5
Final Preferendum	27.4 – 31.0
Laboratory Upper Temperature Avoidance Studies	22 - 39
Temperature Preference Field Studies	22 - 37
Thresholds from EPA and Colorado (MWAT)	32 – 31.8
Recommended Chronic Temperature Tolerance	32

Acute Thermal Tolerance Thresholds

Table 2 provides a summary of the range of acute temperature tolerance values for bluegill sunfish for various lines of evidence. These values are based upon a review of 17 papers and publications, the details of which are summarized in Attachment B.

For ease of presentation, the UILT and CTM values have been summarized by acclimation temperature ranges. However as discussed in the methodology document, only the UILT and CTM values for acclimation temperature near the recommended chronic criterion (32°C) are to be included in the acute criterion development process. For bluegill sunfish, UILT and CTM values for acclimation temperatures $30-35^{\circ}\text{C}$ are utilized for criterion development.

Table 2. Summary of Acute Temperature Tolerances

Category	Temperature	Potential Acute
	Tolerances (°C)	Criteria (°C)
Laboratory Lethal Studies – UILT/UUILT		
UILT		
Acclim. = $1 - 10^{\circ}$ C	23.3 – 30.6	
Acclim. = $10 - 20^{\circ}$ C	27.5 – 31.5	
Acclim. = $20 - 25$ °C	31.0 – 36.1	
Acclim. = $25 - 30.0^{\circ}$ C	33.8 – 37.4	
Acclim. = $30 - 35$ °C	33.8 – 39.0	$31.8 - 37.0^{1}$
Laboratory Lethal Studies – CTM		
Acclim. = $10 - 20^{\circ}$ C	30.4 - 37.3	
Acclim. = $20 - 25$ °C	35.6 – 39.1	
Acclim. = $25 - 30$ °C	35.8 – 41.2	
$Acclim. = 30 - 35^{\circ}C$	37.4 – 42.8	$31.5 - 36.9^2$
Field Studies		
Thresholds from EPA and Colorado	35 –	33.5
Recommended Acute Temperature Tolerance	3	5

¹UILT and UUILT values reduced by 2°C to provide 100% survival (see *Methodology*)

A review of laboratory studies suggests that an appropriate acute criterion should fall between 31.5 and 37.0°C. This is obviously a wide range from which to select an appropriate value and best professional judgment is called for. NDEP's approach is to accept the EPA recommendations from Brungs and Jones (1977) unless the literature review provides a compelling reason to utilize another value. EPA's acute value of 35°C falls within the upper end of the range of potential criteria found in the literature, and is recommended as the acute thermal tolerance level for juvenile/adult bluegill sunfish.

²CTM values reduced by 3.9°C to estimate quasi-UILT values. Quasi-UILT values then reduced by 2°C to provide 100% survival (see *Methodology*)

References

Banner, A. and J.A. Van Armen. 1973. Thermal effects on eggs, larvae and juveniles of bluegill sunfish. US EPA, Duluth, Minn.

Beitinger, T.L. 1974. Thermoregulatory behavior and diel activity patterns of bluegill, *Lepomis macrochirus*, following thermal shock. Fishery Bulletin 72(3):1087-1093.

Beitinger, T.L. 1976. Behavioral thermoregulation by bluegill exposed to various rates of temperature change. In Thermal Ecology II, Esch, G.W., McFarlane, R.W. (eds.). Energy Research and Development Administration. Springfield, VA.

Beitinger, T.L. 1977. Thermopreference behavior of bluegill (*Lepomis macrochirus*) subjected to restrictions in available temperature range. Copeia, 536-541.

Beitinger, T. L., and Magnuson, J. J. 1979. Growth rates and temperature selection of bluegill, *Lepomis macrochirus*. Transactions of the American Fisheries Society, 108(4):378-382.

Block, C.J., J.R. Spotila, E.A. Standora, and J.W. Gibbons. 1984. Behavioral thermoregulation of largemouth bass, *Micropterus salmoides*, and bluegill, *Lepomis macrochirus*, in a nuclear reactor cooling reservoir. Environ Biol Fish 11(1):41–52.

Carveth, C.J., Widmer, A., Bonar. 2006. Comparison of upper thermal tolerances of native and nonnative fish species in Arizona. Transactions of the American Fisheries Society 135:1433-1440.

Cherry, D.S., K.L. Dickson, and J. Cairns, Jr. 1975. Temperature selected and avoided by fish at various acclimation temperatures. Journal of the Fisheries Research Board of Canada 32:485-491.

Cherry, D.S., K.L. Dickson, J. Carns, Jr., and J.R. Stauffer. 1977. Preferred, avoided, and lethal temperatures offish during rising temperature conditions. Journal of the Fisheries Research Board of Canada, 34:239-246.

Cox, D.K. 1974. Effect of three heating rates on the critical thermal maximum of bluegill. In: J.W. Gibbons & R. R. Sharitz, editors. Thermal ecology. AEC symposium series. Springfield: National Technical Information Services. pp. 158–163.

Cvancara, V.A., S.F. Stieber, and B.A. Cvancara. 1977. Summer temperature tolerance of selected species of Mississippi River acclimated young of the year fishes. Comparative Biochemistry and Physiology, 56A: 81-85.

Dent, L. and W.I. Lutterschmidt. 2003. Comparative thermal physiology of two sympatric sunfishes (Centrarchidae: Perciformes) with a discussion of microhabitat utilization. Journal of Thermal Biology, 28:67-74.

Eaton, J.G., J.H. McCormick, B.E. Goodno, D.G. O'Brien, H.G. Stefan, M. Hondzo, and R.M. Scheller. 1995. A field information-based system for estimating fish temperature tolerances. Fisheries 20(4):10-18.

Hart, J.S. 1952. Geographic variations of some physiological and morphological characters in certain freshwater fish. University of Toronto Biological Series No. 60.

Hathaway, E.S. 1927. Quantitative study of the changes produced by acclimation in the tolerance of high temperatures by fishes and amphibians. Bulletin of the U.S. Bureau of Fisheries 43:169-192.

Hickman, G.D. and M.R. Dewey. 1973. Notes on the upper lethal temperature of the duskystripe shiner, *Notropis pilspryi*, and the bluegill, *Lepomis macrochirus*. Transactions of the American Fisheries Society 102:838-840.

Hill, L.G., G.D. Schnell, and J. Pigg. 1975. Thermal acclimation and temperature selection in sunfishes (Lepomis, Centrarchidaie). The Southwestern Naturalist 20 (2):177-184.

Holland, W.E., M.H. Smith, J.W. Gibbons, and R.E. Brown. 1974. Thermal tolerances of fish from a reservoir receiving heated effluent from a nuclear reactor. Physiological Zoology 47(2):110-118.

Kelsch, S.W. and W.H. Neill. 1990. Temperature preference versus acclimation in fishes: selection for changing metabolic optima. Transactions of the American Fisheries Society, 119(4):601-610.

Kelsch, S.W. 1996. Temperature selection and performance by bluegills: evidence for selection in response to available power. Transactions of the American Fisheries Society 125:948-955.

Lemke, A. 1977. Optimum temperature for growth of juvenile bluegills. Progressive Fish-Culturist 39:55-57.

Lutterschmidt, W.I., and V.H. Hutchison. 1997. The critical thermal maximum: data to support the onset of muscle spasm as the definitive end point. Canandian Journal of Zoology 75:1553–1560.

Marcy, B.C. Jr. 1976. Fishes of the Lower Connecticut River and the Effects of the Connecticut Yankee Plant. pp 61-113 ln D. Merriman and L.M. Thorpe (eds). The Connecticut River Ecological Study: The Impact of a Nuclear Power Plant. Monograph No. 1. American Fisheries Society. 251 pp.

Murphy, J.C., C. Garten, M.H. Smith, and E.A. Standora. 1976. Thermal tolerance and respiratory movement of bluegill from two populations tested at different levels of acclimation temperature and water hardness. In Thermal Ecology II, Proceedings of a Symposium held at Augusta Georgia April 2-5, 1975. CONF-750425, 1976. p 145-147, 1 tab, I 15 ref.

Neill, W.H., J.J. Magnuson, and G.G. Chipman. 1972. Behavioral thermoregulation by fishes: a new experimental approach. Science 176: 1443-45.

Neill, W.H. and J.J. Magnuson. 1974. Distributional ecology and behavioral thermoregulation of fishes in relation to heated effluent from a power plant at Lake Monona, Wisconsin. Transactions of the American Fisheries Society 103(4):664-710.

Peterson, S.E., and R.M. Schutsky. 1976. Some relationships of upper thermal tolerances to preference and avoidance responses of bluegill. Thermal Ecology II, Proceedings of a symposium held at Augusta, Georgia.

Reutter, J.M and C.E. Herdendorf. 1974. Laboratory estimates of the seasonal final temperature preferenda of some Lake Erie fish. Proc. 17th Great Lakes Res 1974:59-68.

Reutter, J.M and C.E. Herdendorf. 1976. Thermal discharge from a nuclear power plant: predicted effects on Lake Erie Fish. Ohio J. Sci. 76, no. 1: 39-45.

Reynolds, W.W. and M.E. Casterlin. 1976. Thermal preferenda and behavioral thermoregulation in three centrarchid fishes. In Thermal Ecology II, Esch, G.W., McFarlane, R.W. (eds.). Energy Research and Development Administration. Springfield, VA.

Reynolds, W.W. and M.E. Casterlin. 1979. Effect of temperature on locomotor activity in the goldfish (*Carassius auratus*) and the bluegill (*Lepomis macrochirus*): presence of an activity well in the region of the final preferendum. Hydrobiologia 65, 3-5

Schaefer, J.F., W.I. Lutterschmidt, and L.G. Hill. 1999. Physiological performance and stream microhabitat use by the centrachid *Lepomis megalotis* and *Lempomis macrochirus*. Environmental Biology of Fishes 54: 303-312.

Smale, M. A., and C.F. Rabeni. 1995. Hypoxia and hypothermia tolerances of headwater stream fishes. Transactions of the American Fisheries Society 124:698-710.

Stauffer, J.R., K.L. Dickson, J. Cairns Jr., and D.S. Cherry. 1976. The potential and realized influences of temperature on the distribution of fishes in the New River, Glen Lyn, Virginia. Wildlife Monographs 50: 4-40.

Stuntz, W.E. and J.J. Magnuson. 1976. Daily ration, temperature selection, and activity of bluegill. In Thermal Ecology II, Esch, G.W., McFarlane, R.W. (eds.). Energy Research and Development Administration. Springfield, VA.

Yoder, C.O., Gammon, J.R. 1976. Seasonal distribution and abundance of Ohio River fishes at the J.M. Stuart electric generating station. In Thermal Ecology II, Esch, G.W., McFarlane, R.W. (eds.). Energy Res. and Devel. Admin. Springfield, VA.

ATTACHMENT A
Detailed Summary of Chronic Thermal Tolerance Values for Bluegill Sunfish, Juvenile and Adult, Summer

Table A-1. Chronic Temperature Tolerances – Laboratory Optimal Growth Studies

Reference	Age or Size	Acclim.	Optimum Growth	Temperature	Upper Optimum Growth Temperature		
Reference	Age of Size	Temp. (°C)	Temp. (°C)	Comment	Temp. (°C)	Comment	
Beitinger and Magnuson (1979)	$16.8 \text{ g} \pm 3.45 \text{ g}$	Test temperatures ¹	31 ²				
Lemke (1977)	Juvenile	20	30				

¹Bluegills, captured from Lake Mendota, Wisconsin during autumn, were acclimated to test temperatures in the laboratory for at least 2 weeks prior to experiments.

Table A-1a. Chronic Temperature Tolerances - Laboratory Temperature for Maximum Critical Swimming Speed

Reference	Age or Size	Age or Size	Acclim.	Optimum Swi Performance Ter			ım Swimming Performance Temperature
		Temp. (°C)	Temp. (°C)	Comment	Temp. (°C)	Comment	
	135 – 175 mm	13 21.5	26.2				
Kelsch (1996)		25	28.1	Median	29.8	Third quartile	
		30	30.4		31.4		

²Although the growth of bluegills was greatest at 31 C, no significant differences occurred among fish at 25.0, 28.0, and 31.0 C (F = 0.629; P > 0.50).

Table A-2. Chronic Temperature Tolerances – Laboratory Preference Studies

Reference	A go on Sign	Acclim.		e Preference iperature	Upper Prefe	rence Temperature	Final Prefe	erendum
Reference	Age or Size	Temp.	Temp. (°C)	Comment	Temp. (°C)	Comment	Temp. (°C)	Comment
Beitinger (1974)	Juvenile 71 – 100 mm	25	31.2					
Beitinger (1976)	91 mm ± 10 mm	25	31.8 – 32.0					
Beitinger (1977)	71.9 mm ± 10.1 mm	25	31.2					
Cherry (1975)	> 1 year	6 – 30	18.7 – 31.7					
Cherry (1977)	< 1 year 50 – 100 mm fork length	12 – 36	24.1 – 31.8					
Hill et al. (1973)	Yearling	16 21 26	22.5 23.3 28.2	V				
Kelsch and Neil (1990)	38 – 75 mm	20 30 35	27 30 32					
Neill et al. (1972)			27 – 31	Lower and upper limits of temperatures occupied by 1 fish				
Neill and Magnuson (1974)	<1 year 53 – 83 mm	20 – 22	28.5 – 33.5					

Table A-2. Chronic Temperature Tolerances – Laboratory Preference Studies (cont'd)

Reference	Age or Size	Acclim. Temp.		e Preference nperature	Upper Prefe	rence Temperature	Final Pre	eferendum
Reference	Age of Size	(°C)	Temp. (°C)	Comment	Temp. (°C)	Comment	Temp. (°C)	Comment
Peterson and	90 mm	13.0	24.6		4			
Schutsky (1975)	90 mm	27.0	30.7					
Reutter and Herdendorf (1974 and 1976)	Adult	Unknow n ¹					27.4	Final preferendum during a winter study. ²
Reynolds and Casterlin (1976)	45 – 110 mm	22	31.7					
Reynolds and Casterlin (1979)		20					31	
Stuntz and Magnuson (1976)	Yearling 75 – 125 mm	25	30					

¹The water temperature in the acclimation tank was maintained as close to lake temperature as possible (usually within 2°C of lake temperature). ²Final preferendum during a winter study. Reutter and Herdendorf (1974) found that winter preferenda were several degrees lower than summer preferenda. A summer study was not conducted for bluegill by Reutter and Herdendorf (1974).

Table A-3. Chronic Temperature Tolerances – Laboratory Upper Temperature Avoidance Studies

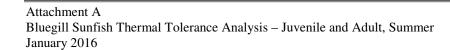

Reference	Age or Size	Acclim. Temp. (°C)	Temperature (°C)	Comment
Kererence		Accini. Temp. (C)	Temperature (C)	Comment
Beitinger (1974)	Juvenile	25	33.1 – 33.8	
	72 – 105 mm			
Beitinger (1976)	$91 \text{ mm} \pm 10 \text{ mm}$	25	33.4 – 33.7	
Cherry (1975)	> 1 year	6 - 30	22 – 35	
	< 1 year			
Cherry (1977)	50 mm – 100 mm fork	12 - 36	24 – 39	
	length			
Neill and Magnuson	< 1 year	20 22	22.5	
(1974)	81 – 97 mm	20 – 22	33.5	
Determine and Coloutely.		1	27.6	
Peterson and Schutsky	90 mm	13	30.3	
(1975)		27	33.5	
		12	24	
		15	27	
		18	30	
Stauffer et al. (1076)	I Laboratoria	21	30	
Stauffer et al. (1976)	Unknown	24	33	
		27	33]
		30	33	
		33	36	

Table A-4. Chronic Temperature Tolerances – Field Studies

Reference	Temperature (°C)	Comment
Block et al. (1984)	32 - 37	Bluegill stayed in water from 32–37°C.
Eaton et al. (1995)	31.7	Based upon 95 th percentile of 5% highest weekly average temperatures.
Marcy (1976)	35.0	Listed as maximum and mean temperature
Neill and Magnuson (1974)	<31.5	Young bluegill spend a majority of time at or below 29.4 – 31.3°C and almost no time above 31.5°C.
Yoder and Gammon (1975)	22 – 34	Temperature range where bluegill where captured by electrofishing and in D nets in the summer.

Table A-5. Chronic Temperature Tolerances – EPA and Colorado

Reference	Temperature (°C)	Comments
EPA (1977)	32	Recommended level as MWAT
Colorado WQCD (2007)	31.8	Recommended level as MWAT

ATTACHMENT B
Detailed Summary of Acute Thermal Tolerance Values for Bluegill Sunfish, Juvenile and Adult, Summer


Table B-1. Acute Temperature Tolerances – Laboratory Lethal Temperatures, UILT/UUILT

D. C	G! A	Acclim. Temp.	T 4 D 4	UII	LT .	UUI	LT
Reference	Size or Age	(°C)	Test Duration	Temp. (°C)	Comment	Temp. (°C)	Comment
			1-hour	28.9			
			1-d	28.5			
		12.1	2-d	28.5			
			3-d	27.7			
			4-d	27.5			
			1-hour	34.7			
			1-d	33.0			
		19.0	2-d	33.0			
			3-d	32.9			
Banner and Van	Juvenile		4-d	33.0			
Arman (1973)	Juvenne		1-hour	37.4			
			1-d	36.4			
		26.0	2-d	34.1			
			3-d	36.1			
			4-d	36.1			
			1-hour	39.0			
			1-d	37.5			
		32.9	2-d	37.4			
			3-d	37.3			
			4-d	37.3			
Cvancara et al. (1977)	Young of the year	$24 - 33^{1}$	2-d	28.5			
		15		30.7			
Hart (1952)		20		31.5			
		30		33.8^{2}			

Table B-1. Acute Temperature Tolerances – Laboratory Lethal Temperatures, UILT/UUILT (cont'd)

Reference	Size on Age	Acclim. Temp.	Test Duration	UILT		UUILT	
Keterence	Size or Age	(°C)	Test Duration	Temp. (°C)	Comment	Temp. (°C)	Comment
TT - 41		10		$30 - 30.6^3$			
Hathaway	1-2 years old	21	1-d	34^3			
(1927)	•	30		$34.3 - 35.6^3$			
Hickman and Dewey (1973)	37 mm	21.5	1-d	31		35.5	
Determine and		1		23.3			
Peterson and	90 mm	13	4-d	29.3			
Schutsky (1975)		27		35.8			

¹Fish were placed in aquaria maintained at the temperature of the water from the collection site. After 2 hours at constant river water temperature, the water temperature in the aquaria was increased at a rate of 2 – 4°C per hour until the appropriate test temperature was reached. River water temperature ranged from 24 to 33°C during the collection period.

²Listed in Table 4 on page 68 as "33.8?" No explanation is given for the question mark.

³Variant of UILT, preceded coining of "UILT"; Used only 24 hour tolerances. 4 min, 15 min, 1 hr, and 4 hr. tolerances also reported; Author used weighted average for lethal temperature; unbalanced design.

Table B-2. Acute Temperature Tolerances – Laboratory Lethal Temperatures, Critical Thermal Maximum

Reference	Size or Age	Acclim. Temp. (°C)	Rate	Temperature (°C)	Endpoint		
		25		35.8	Loss of equilibrium		
Compath at al. (2006)	80 – 116 mm	23	0.3°C/min	37.3	Death		
Carveth et al. (2006)	80 – 110 IIIII	30	(18°C/hour)	38.7	Loss of equilibrium		
		30		39.6	Death		
			0.1°C/min	36.6	Loss of equilibrium		
			(6°C/hour)	37.5	Cessation of		
		· ·	(o Chlour)	31.3	opercular beating		
	7.3-14 cm		0.5°C/min	37.5	Loss of equilibrium		
Cox (1974)		26	(30°C/hour)	39.1	Cessation of		
	4.8-40.5 g		(30 C/flour)	39.1	opercular beating		
				1.0°C/min	37.9	Loss of equilibrium	
				(60°C/hour)	39.2	Cessation of	
			(60 C/IIouI)	39.2	opercular beating		
Dent and Lutterschmidt	99.7 mm	20	1.0°C/min	37.3	Loss of equilibrium		
$(2003)^1$	33.3 g	30	(60°C/hour)	41.2	Loss of equilibrium		
		25		36.3 - 37.0	Loss of equilibrium		
						37.0 - 39.1	Death
Holland et al. (1974)	Juveniles				30	1.0°C/min	37.4 - 39.6
11011and et al. (1974)	Juveillies	30	(60°C/hour)	39.1 - 40.9	Death		
		35		40.4 - 41.4	Loss of equilibrium		
		33		41.9 - 42.8	Death		
Lutterschmidt and			1.0°C/min	30.4	Loss of equilibrium		
Hutchinson (1997)	Unknown	10	(60°C/hour)	33.6	Onset of opercular		
Truteminson (1997)			(60 C/flour)		spasms		
	40 – 82 mm	16	1.0°C/min	31.4 – 31.5			
Murphy et al. (1975)	0.57 - 5.6 g	24	(60°C/hour)	35.6 – 37.5	Loss of equilibrium		
	0.37 – 3.0 g	32	(oo Cilioui)	38.5 – 41.4			

Table B-2. Acute Temperature Tolerances – Laboratory Lethal Temperatures, Critical Thermal Maximum (cont'd)

Reference	Size or Age	Acclim. Temp. (°C)	Rate	Temperature (°C)	Endpoint
Schaefer et al. (1999)	96 mm	10	1.0°C/min (60°C/hour)	32.6	Loss of equilibrium
				36.2	Onset of opercular
					spasms
Smale and Rabeni (1995)	1.5 – 24.1 g	26	0.033°C/min	37.9	Loss of equilibrium
	_		(2°C/hour)		

Only results from groups with n>4 are reported here.

Table B-3. Acute Temperature Tolerances – Other Laboratory Studies

Reference	Size or Age	Acclim. Temp. (°C)	Comment
Beitinger (1974)	Juvenile 72 – 105 mm	25	7 of the 20 fish (35%) exposed to 36.1°C died during treatment. All fish that died lost equilibrium early in the treatment and were dead within 5 minutes.

²CTM values were calculated by subtracting the reported differences between mean Death Point and mean CTM from reported mean temperatures for Death Point.

Table B-4. Acute Temperature Tolerances – EPA and Colorado

Reference	Temperature (°C)	Comments
EPA (1977)	35	No metric (DM, MWMT, etc.) recommended
Colorado WQCD (2007)	33.5	Recommended level as DM

